Lecture Notes 2-4: The Precise Definition of the Limit

REVIEW: List our present strategies for determining $\lim _{x \rightarrow a} f(x)$, if it exists.

What are some of the weaknesses in these approaches?

Goals:

- Experience the precise (or formal) definition of the limit.
- Confirm student intuition that there is a lot going on when evaluating limits that may not be crystal clear!
- "Look under the hood" of the mathematics used in Calculus (\& Differential Equations).

PRACTICE PROBLEMS:

1. Graph the region of the $x y$-plane satisfying each of the inequalities below.

$$
|x-3|<1
$$

$$
|x-3|<1 / 2
$$

$$
|y-1|<1 / 3
$$

2. Graph the region of the $x y$-plane satisfying the inequality $|x-a|<c$.
3. Re-write the expression $|x-a|<c$ using interval notation.
4. Let $f(x)=3 x+1$.
(a) Graph $f(x)$.

(b) If the domain of $f(x)$ is restricted to

$$
|x-2|<1,
$$

what would the range of $f(x)$ be? Sketch the intervals representing domain and range on the graph.
(c) If the domain of $f(x)$ is restricted to

$$
|x-2|<\frac{1}{5}
$$

what would the range of $f(x)$ be? Sketch the intervals representing domain and range on the graph.
(d) We are now going to switch our point of view so READ CAREFULLY! Assume you must "hit a target" in the range. Specifically, assume you need the output of the function to lie in the region $|y-7|<1$, how would you need to restrict your domain? Is your answer UNIQUE? Give you final answer in the form $|x-a|<c$, for some a and c.
(e) Repeat the previous question but replace the target interval $|y-7|<1$ with $|y-7|<$ $\frac{1}{10}$.
(f) Repeat the previous question but replace the target interval with $|y-7|<\epsilon$, where ϵ is some unknown but fixed positive number. (Note the symbol ϵ is called epsilon and in mathematics is very nearly always used to represent some really small positive number, 0.0000001 , for example.)

THE Precise Definition of the Limit:

We say $\lim _{x \rightarrow a} f(x)=L$, if for every number $\epsilon>0$, there exists a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta, \text { then }|f(x)-L|<\epsilon
$$

5. Use the precise definition of the limit to show $\lim _{x \rightarrow 2} 3 x+1=\square$.
6. In words in English, write down how to apply the precise definition of the limit. Assume you are given a function, $f(x)$ and an x-value a and asked to find $\lim _{x \rightarrow a} f(x)$.

